Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563818

RESUMO

Uveal melanoma (UM) is the most common cancer of the eye. The loss of chromosome 3 (M3) is associated with a high risk of metastases. M3 tumors are more infiltrated by T-lymphocytes than low-risk disomic-3 (D3) tumors, contrasting with other tumor types in which T cell infiltration correlates with better prognosis. Whether these T cells represent an antitumor response and how these T cells would be primed in the eye are both unknown. Herein, we characterized the T cells infiltrating primary UMs. CD8+ and Treg cells were more abundant in M3 than in D3 tumors. CD39+PD-1+CD8+ T cells were enriched in M3 tumors, suggesting specific responses to tumor antigen (Ag) as confirmed using HLA-A2:Melan-A tetramers. scRNAseq-VDJ analysis of T cells evidenced high numbers of proliferating CD39+PD1+CD8+ clonal expansions, suggesting in situ antitumor Ag responses. TCRseq and tumor-Ag tetramer staining characterized the recirculation pattern of the antitumor responses in M3 and D3 tumors. Thus, tumor-Ag responses occur in localized UMs, raising the question of the priming mechanisms in the absence of known lymphatic drainage.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Melanoma/terapia , Linfócitos T CD8-Positivos , Drenagem
2.
Proc Natl Acad Sci U S A ; 121(14): e2311348121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530897

RESUMO

How T-cell receptor (TCR) characteristics determine subset commitment during T-cell development is still unclear. Here, we addressed this question for innate-like T cells, mucosal-associated invariant T (MAIT) cells, and invariant natural killer T (iNKT) cells. MAIT and iNKT cells have similar developmental paths, leading in mice to two effector subsets, cytotoxic (MAIT1/iNKT1) and IL17-secreting (MAIT17/iNKT17). For iNKT1 vs iNKT17 fate choice, an instructive role for TCR affinity was proposed but recent data argue against this model. Herein, we examined TCR role in MAIT and iNKT subset commitment through scRNAseq and TCR repertoire analysis. In our dataset of thymic MAIT cells, we found pairs of T-cell clones with identical amino acid TCR sequences originating from distinct precursors, one of which committed to MAIT1 and the other to MAIT17 fates. Quantitative in silico simulations indicated that the number of such cases is best explained by lineage choice being independent of TCR characteristics. Comparison of TCR features of MAIT1 and MAIT17 clonotypes demonstrated that the subsets cannot be distinguished based on TCR sequence. To pinpoint the developmental stage associated with MAIT sublineage choice, we demonstrated that proliferation takes place both before and after MAIT fate commitment. Altogether, we propose a model of MAIT cell development in which noncommitted, intermediate-stage MAIT cells undergo a first round of proliferation, followed by TCR characteristics-independent commitment to MAIT1 or MAIT17 lineage, followed by an additional round of proliferation. Reanalyzing a published iNKT TCR dataset, we showed that this model is also relevant for iNKT cell development.


Assuntos
Células T Invariantes Associadas à Mucosa , Células T Matadoras Naturais , Camundongos , Animais , Subpopulações de Linfócitos T , Timo , Células T Invariantes Associadas à Mucosa/metabolismo , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proliferação de Células
3.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117256

RESUMO

Mucosal-associated invariant T (MAIT) cells harbor evolutionarily conserved TCRs, suggesting important functions. As human and mouse MAIT functional programs appear distinct, the evolutionarily conserved MAIT functional features remain unidentified. Using species-specific tetramers coupled to single-cell RNA sequencing, we characterized MAIT cell development in six species spanning 110 million years of evolution. Cross-species analyses revealed conserved transcriptional events underlying MAIT cell maturation, marked by ZBTB16 induction in all species. MAIT cells in human, sheep, cattle, and opossum acquired a shared type-1/17 transcriptional program, reflecting ancestral features. This program was also acquired by human iNKT cells, indicating common differentiation for innate-like T cells. Distinct type-1 and type-17 MAIT subsets developed in rodents, including pet mice and genetically diverse mouse strains. However, MAIT cells further matured in mouse intestines to acquire a remarkably conserved program characterized by concomitant expression of type-1, type-17, cytotoxicity, and tissue-repair genes. Altogether, the study provides a unifying view of the transcriptional features of innate-like T cells across evolution.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Bovinos , Animais , Camundongos , Ovinos , Diferenciação Celular , Membrana Celular , 60562 , Especificidade da Espécie , Mamíferos/genética
4.
New Phytol ; 232(1): 80-97, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34128549

RESUMO

Trees are long-lived organisms that continuously adapt to their environments, a process in which epigenetic mechanisms are likely to play a key role. Via downregulation of the chromatin remodeler DECREASED IN DNA METHYLATION 1 (DDM1) in poplar (Populus tremula × Populus alba) RNAi lines, we examined how DNA methylation coordinates genomic and physiological responses to moderate water deficit. We compared the growth and drought response of two RNAi-ddm1 lines to wild-type (WT) trees under well-watered and water deficit/rewatering conditions, and analyzed their methylomes, transcriptomes, mobilomes and phytohormone contents in the shoot apical meristem. The RNAi-ddm1 lines were more tolerant to drought-induced cavitation but did not differ in height or stem diameter growth. About 5000 differentially methylated regions were consistently detected in both RNAi-ddm1 lines, colocalizing with 910 genes and 89 active transposable elements. Under water deficit conditions, 136 differentially expressed genes were found, including many involved in phytohormone pathways; changes in phytohormone concentrations were also detected. Finally, the combination of hypomethylation and drought led to the mobility of two transposable elements. Our findings suggest major roles for DNA methylation in regulation of genes involved in hormone-related stress responses, and the maintenance of genome integrity through repression of transposable elements.


Assuntos
Populus , Metilação de DNA/genética , Secas , Regulação da Expressão Gênica de Plantas , Meristema , Populus/genética , Interferência de RNA
5.
Mech Ageing Dev ; 190: 111313, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32721407

RESUMO

Plants form new organs from pluripotent stem cells throughout their lives and under changing environmental conditions. In the Arabidopsis root meristem, a pool of stem cells surrounding a stem cell organizer, named Quiescent Center (QC), gives rise to the specific root tissues. Among them, the columella stem cell niche that gives rise to the gravity-sensing columella cells has been used as a model system to study stem cell regulation at the young seedling stage. However, little is known about the changes of the stem cell niche during later development. Here, we report that the columella stem cell niche undergoes pronounced histological and molecular reorganization as the plant progresses towards the adult stage. Commonly-used reporters for cellular states undergo re-patterning after an initial juvenile meristem phase. Furthermore, the responsiveness to the plant hormone abscisic acid, an integrator of stress response, strongly decreases. Many ageing effects are reminiscent of the loss-of-function phenotype of the central stem cell regulator WOX5 and can be explained by gradually decreasing WOX5 expression levels during ageing. Our results show that the architecture and central regulatory components of the root stem cell niche are already highly dynamic within the first weeks of development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Meristema , Plântula/crescimento & desenvolvimento , Nicho de Células-Tronco/fisiologia , Divisão Celular , Senescência Celular/fisiologia , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Proteínas de Plantas , Coifa/crescimento & desenvolvimento , Coifa/fisiologia , Células-Tronco/fisiologia
8.
J Exp Bot ; 69(20): 4821-4837, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30107545

RESUMO

Trees have a long lifespan and must continually adapt to environmental pressures, notably in the context of climate change. Epigenetic mechanisms are doubtless involved in phenotypic plasticity and in stress memory; however, little evidence of the role of epigenetic processes is available for trees growing in fields. Here, we analyzed the possible involvement of epigenetic mechanisms in the winter-dormant shoot apical meristem of Populus × euramericana clones in memory of the growing conditions faced during the vegetative period. We aimed to estimate the range of genetic and environmentally induced variations in global DNA methylation and to evaluate their correlation with changes in biomass production, identify differentially methylated regions (DMRs), and characterize common DMRs between experiments. We showed that the variations in global DNA methylation between conditions were genotype dependent and correlated with biomass production capacity. Microarray chip analysis allowed detection of DMRs 6 months after the stressful summer period. The 161 DMRs identified as common to three independent experiments most notably targeted abiotic stress and developmental response genes. Results are consistent with a winter-dormant shoot apical meristem epigenetic memory of stressful environmental conditions that occurred during the preceding summer period. This memory may facilitate tree acclimation.


Assuntos
Metilação de DNA , Epigênese Genética , Dormência de Plantas/genética , Populus/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Procedimentos Analíticos em Microchip , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Estações do Ano , Árvores/genética , Árvores/crescimento & desenvolvimento
9.
J Exp Bot ; 69(3): 537-551, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29211860

RESUMO

The adaptive capacity of long-lived organisms such as trees to the predicted climate changes, including severe and successive drought episodes, will depend on the presence of genetic diversity and phenotypic plasticity. Here, the involvement of epigenetic mechanisms in phenotypic plasticity toward soil water availability was examined in Populus×euramericana. This work aimed at characterizing (i) the transcriptome plasticity, (ii) the genome-wide plasticity of DNA methylation, and (iii) the function of genes affected by a drought-rewatering cycle in the shoot apical meristem. Using microarray chips, differentially expressed genes (DEGs) and differentially methylated regions (DMRs) were identified for each water regime. The rewatering condition was associated with the highest variations of both gene expression and DNA methylation. Changes in methylation were observed particularly in the body of expressed genes and to a lesser extent in transposable elements. Together, DEGs and DMRs were significantly enriched in genes related to phytohormone metabolism or signaling pathways. Altogether, shoot apical meristem responses to changes in water availability involved coordinated variations in DNA methylation, as well as in gene expression, with a specific targeting of genes involved in hormone pathways, a factor that may enable phenotypic plasticity.


Assuntos
Genoma de Planta/fisiologia , Meristema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Populus/genética , Transcriptoma/fisiologia , Água/metabolismo , Epigênese Genética/fisiologia , Meristema/genética , Brotos de Planta/genética , Brotos de Planta/metabolismo , Transdução de Sinais
10.
Plant Cell Environ ; 40(10): 2236-2249, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28707409

RESUMO

Annual dormancy-growth cycle is a developmental and physiological process essential for the survival of deciduous trees in temperate and boreal forests. Seasonal control of shoot growth in woody perennials requires specific genetic programmes responding to environmental signals. The environmental-controlled mechanisms that regulate the shift between winter dormancy and the growth-promoting genetic programmes are still unknown. Here, we show that dynamics in genomic DNA methylation levels are involved in the regulation of dormancy-growth cycle in poplar. The reactivation of growth in the apical shoot during bud break process in spring is preceded by a progressive reduction of genomic DNA methylation in apex tissue. The induction in apex tissue of a chilling-dependent poplar DEMETER-LIKE 10 (PtaDML10) DNA demethylase precedes shoot growth reactivation. Transgenic poplars showing downregulation of PtaDML8/10 caused delayed bud break. Genome-wide transcriptome and methylome analysis and data mining revealed that the gene targets of DEMETER-LIKE-dependent DNA demethylation are genetically associated with bud break. These data point to a chilling-dependent DEMETER-like DNA demethylase mechanisms being involved in the shift from winter dormancy to a condition that precedes shoot apical vegetative growth in poplar.


Assuntos
Temperatura Baixa , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Populus/enzimologia , Populus/fisiologia , Desmetilação do DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Brotos de Planta/enzimologia , Brotos de Planta/genética , Populus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...